Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Genet Eng Biotechnol ; 19(1): 121, 2021 Aug 18.
Article in English | MEDLINE | ID: covidwho-2315664

ABSTRACT

BACKGROUND: Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. RESULTS: The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. CONCLUSION: The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.

2.
COVID ; 2(2):138-147, 2022.
Article in English | MDPI | ID: covidwho-1648813

ABSTRACT

Background: Patients with cardiovascular disease and risk factors for cardiovascular illness are more likely to acquire severe 2019 novel coronavirus (2019-nCoV) infection (COVID-19). COVID-19 infection is more common in patients with cardiovascular illness, and they are more likely to develop severe symptoms. Nevertheless, whether COVID-19 patients are more likely to develop cardiovascular disorders such as acute myocardial infarction (AMI) is still up for debate. Methods: We will follow the preferred reporting items for systematic review and meta-analysis (PRISMA) to report our final study, including a systematic search of the bibliographic database using the appropriate combination of search terms or keywords. The choice of search terms is discussed in more detail later in this paper. The obtained results will be screened, and the data extracted from the studies selected for systematic review will be based on the predefined inclusion and exclusion criteria. Using the obtained data, we will then perform the associated Meta-analysis to generate the forest plot (pooled estimated effect size Hazard Ratio (HR) and 95% Confidence Intervals (CI) values) using the random-effects model. Any publication bias will be assessed using the funnel plot symmetry, Orwin and Classic Fail-Safe N Test and Begg and Mazumdar Rank Correlation Test and Egger’s Test of the intercept. In cases where insufficient data occur, we will also perform a qualitative review. Discussion: This systematic review will explore COVID-19 clinical outcomes, especially survival in patients hospitalised with Acute Myocardial Infarction, by utilising a collection of previously published data on hospitalised COVID-19 patients and Myocardial Infarction. Highlighting these prognostic survival analyses of COVID-19 patients with AMIT will have significant clinical implications by allowing for better overall treatment strategies and patient survival estimates by offering clinicians a method of quantitatively analysing the pattern of COVID-19 cardiac complications.

3.
JNCI Cancer Spectr ; 5(2): pkaa102, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1101856

ABSTRACT

BACKGROUND: Cancer patients with coronavirus disease 2019 (COVID-19) have been reported to have double the case fatality rate of the general population. METHODS: A systematic search of PubMed, Embase, and Cochrane Central was done for studies on cancer patients with COVID-19. Pooled proportions were calculated for categorical variables. Odds ratio (OR) and forest plots (random-effects model) were constructed for both primary and secondary outcomes. RESULTS: This systematic review of 38 studies and meta-analysis of 181 323 patients from 26 studies included 23 736 cancer patients. Our meta-analysis shows that cancer patients with COVID-19 have a higher likelihood of death (n = 165 980, OR = 2.54, 95% confidence interval [CI] = 1.47 to 4.42), which was largely driven by mortality among patients in China. Cancer patients were more likely to be intubated. Among cancer subtypes, the mortality was highest in hematological malignancies (n = 878, OR = 2.39, 95% CI = 1.17 to 4.87) followed by lung cancer (n = 646, OR = 1.83, 95% CI = 1.00 to 3.37). There was no association between receipt of a particular type of oncologic therapy and mortality. Our study showed that cancer patients affected by COVID-19 are a decade older than the normal population and have a higher proportion of comorbidities. There was insufficient data to assess the association of COVID-19-directed therapy and survival outcomes in cancer patients. CONCLUSION: Cancer patients with COVID-19 disease are at increased risk of mortality and morbidity. A more nuanced understanding of the interaction between cancer-directed therapies and COVID-19-directed therapies is needed. This will require uniform prospective recording of data, possibly in multi-institutional registry databases.


Subject(s)
COVID-19/complications , Databases, Factual/statistics & numerical data , Neoplasms/complications , Neoplasms/therapy , Aged , COVID-19/epidemiology , COVID-19/virology , Cerebrovascular Disorders/complications , Female , Hospital Mortality/trends , Humans , Liver Diseases/complications , Lung Diseases/complications , Male , Metabolic Diseases/complications , Middle Aged , Neoplasms/mortality , Pandemics , Renal Insufficiency, Chronic/complications , SARS-CoV-2/physiology
4.
JNCI Cancer Spectr ; 5(1): pkaa103, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-933863

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic caused by SARS-CoV-2 has exacted an enormous toll on healthcare systems worldwide. The cytokine storm that follows pulmonary infection is causally linked to respiratory compromise and mortality in the majority of patients. The sparsity of viable treatment options for this viral infection and the sequelae of pulmonary complications have fueled the quest for new therapeutic considerations. One such option, the long-forgotten idea of using low-dose radiation therapy, has recently found renewed interest in many academic centers. We outline the scientific and logistical rationale for consideration of this option and the mechanistic underpinnings of any potential therapeutic value, particularly as viewed from an immunological perspective. We also discuss the preliminary and/or published results of prospective trials examining low-dose radiation therapy for COVID-19.


Subject(s)
COVID-19/radiotherapy , Radiation Dosage , SARS-CoV-2/radiation effects , Virus Internalization/radiation effects , Virus Replication/radiation effects , COVID-19/epidemiology , COVID-19/virology , Cytokines/metabolism , Dose-Response Relationship, Radiation , Host-Pathogen Interactions/radiation effects , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/radiation effects , Leukocytes, Mononuclear/virology , Pandemics , Radiotherapy Dosage , SARS-CoV-2/physiology
5.
Radiat Res ; 194(5): 452-464, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-845683

ABSTRACT

The limited impact of treatments for COVID-19 has stimulated several phase 1 clinical trials of whole-lung low-dose radiation therapy (LDRT; 0.3-1.5 Gy) that are now progressing to phase 2 randomized trials worldwide. This novel but unconventional use of radiation to treat COVID-19 prompted the National Cancer Institute, National Council on Radiation Protection and Measurements and National Institute of Allergy and Infectious Diseases to convene a workshop involving a diverse group of experts in radiation oncology, radiobiology, virology, immunology, radiation protection and public health policy. The workshop was held to discuss the mechanistic underpinnings, rationale, and preclinical and emerging clinical studies, and to develop a general framework for use in clinical studies. Without refuting or endorsing LDRT as a treatment for COVID-19, the purpose of the workshop and this review is to provide guidance to clinicians and researchers who plan to conduct preclinical and clinical studies, given the limited available evidence on its safety and efficacy.


Subject(s)
Coronavirus Infections/radiotherapy , Pneumonia, Viral/radiotherapy , Radiation Dosage , Animals , COVID-19 , Clinical Trials as Topic , Humans , Pandemics , Radiotherapy Dosage , Risk , Translational Research, Biomedical
6.
Cancer Nanotechnol ; 11(1): 7, 2020.
Article in English | MEDLINE | ID: covidwho-704912
SELECTION OF CITATIONS
SEARCH DETAIL